2,057 research outputs found

    OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage

    Full text link
    The truncated singular value decomposition (SVD) of the measurement matrix is the optimal solution to the_representation_ problem of how to best approximate a noisy measurement matrix using a low-rank matrix. Here, we consider the (unobservable)_denoising_ problem of how to best approximate a low-rank signal matrix buried in noise by optimal (re)weighting of the singular vectors of the measurement matrix. We exploit recent results from random matrix theory to exactly characterize the large matrix limit of the optimal weighting coefficients and show that they can be computed directly from data for a large class of noise models that includes the i.i.d. Gaussian noise case. Our analysis brings into sharp focus the shrinkage-and-thresholding form of the optimal weights, the non-convex nature of the associated shrinkage function (on the singular values) and explains why matrix regularization via singular value thresholding with convex penalty functions (such as the nuclear norm) will always be suboptimal. We validate our theoretical predictions with numerical simulations, develop an implementable algorithm (OptShrink) that realizes the predicted performance gains and show how our methods can be used to improve estimation in the setting where the measured matrix has missing entries.Comment: Published version. The algorithm can be downloaded from http://www.eecs.umich.edu/~rajnrao/optshrin

    The singular values and vectors of low rank perturbations of large rectangular random matrices

    Get PDF
    In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalue aspect of the problem, the non-random limiting value is shown to depend explicitly on the limiting singular value distribution of the unperturbed matrix via an integral transforms that linearizes rectangular additive convolution in free probability theory. The large matrix limit of the extreme singular values of the perturbed matrix differs from that of the original matrix if and only if the singular values of the perturbing matrix are above a certain critical threshold which depends on this same aforementioned integral transform. We examine the consequence of this singular value phase transition on the associated left and right singular eigenvectors and discuss the finite nn fluctuations above these non-random limits.Comment: 22 pages, presentation of the main results and of the hypotheses slightly modifie

    The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices

    Get PDF
    We consider the eigenvalues and eigenvectors of finite, low rank perturbations of random matrices. Specifically, we prove almost sure convergence of the extreme eigenvalues and appropriate projections of the corresponding eigenvectors of the perturbed matrix for additive and multiplicative perturbation models. The limiting non-random value is shown to depend explicitly on the limiting eigenvalue distribution of the unperturbed random matrix and the assumed perturbation model via integral transforms that correspond to very well known objects in free probability theory that linearize non-commutative free additive and multiplicative convolution. Furthermore, we uncover a phase transition phenomenon whereby the large matrix limit of the extreme eigenvalues of the perturbed matrix differs from that of the original matrix if and only if the eigenvalues of the perturbing matrix are above a certain critical threshold. Square root decay of the eigenvalue density at the edge is sufficient to ensure that this threshold is finite. This critical threshold is intimately related to the same aforementioned integral transforms and our proof techniques bring this connection and the origin of the phase transition into focus. Consequently, our results extend the class of `spiked' random matrix models about which such predictions (called the BBP phase transition) can be made well beyond the Wigner, Wishart and Jacobi random ensembles found in the literature. We examine the impact of this eigenvalue phase transition on the associated eigenvectors and observe an analogous phase transition in the eigenvectors. Various extensions of our results to the problem of non-extreme eigenvalues are discussed.Comment: 27 pages, 1 figure. The paragraph devoted to rectangular matrices has been suppressed in this version (it will appear independently in a forthcoming paper
    • …
    corecore